Navigation/Menü: Links auf weitere Seiten dieser Website und Banner
08.10.2010
HRSC Press Release #476 - Melas Chasma (orbit 3195)
Perspective view [1] |
On 1 July 2006 the High-Resolution Stereo Camera (HRSC), under the leadership of the Principal Investigator Prof. Dr. Gerhard Neukum of Freie Universitaet Berlin, onboard the ESA spacecraft Mars Express obtained image data in orbit 3195 with a ground resolution of approximately 23 meters per pixel. The data were acquired in the region of Melas Chasma at approximately 10° southern latitude and 290° eastern longitude.
Context Map [2] |
Melas Chasma is part of the Valles Marineris graben system, which is one of the deepest regions on Mars. The observed sulfate deposits and ancient fluvial channels in Melas Chasma and elsewhere in Valles Marineris clearly proof the existence of past liquid water on the surface of Mars. The southwestern region of Melas Chasma where light-toned deposits are present, has been interpreted as a former lake. In its western region, ancient fluvial channels are found.
Color-coded elevation model [3] |
The colour-coded elevation map gives a first impression of the strong relief in this region: the height difference between graben floor and plateau is more than 9000 m! The deepest portions of the basin are at -5 km, the surrounding plateau extends at elevations up to 4 km. These elevations refer to the Mars areoid, a reference body for the irregularly shaped planet. The region extends 200 km x 100 km and covers an area of roughly 20 000 km² which is about the size of Slovenia.
Feature Map [4] |
The scarp of the graben shows evidence for multiple large-scale landslides and mass movements into the basin which formed vast fans [box 1]. The surface texture of the deposits at the base of the scarp appears rough and contrasts to the smooth surface of material that travelled farther into the basin. Flow textures such as pressure ridges [box 2], levees, and channels are observed.
Nadir Image [5] |
Auf dem Plateau im oberen Bildrand [Box 3] sowie im Becken sind vereinzelt ehemalige Talsysteme zu beobachten. Die Orientierung des größeren Flusslaufes parallel zur Abbruchkante lässt vermuten, dass dieser ursprünglich einer tektonischen Störung folgte. Alte Störungen in diesem Gebiet tragen zur Instabilität der Hänge bei, die dann kollabieren können.
On the plateau in the upper part of the image [box 3] and within the basin a few ancient valley systems are preserved. The orientation of the largest valley is parallel to the orientation of the scarp which may indicate that the valley originally followed an old tectonic fault. These faults are probably the main reason for the instability of the flanks, which frequently collapsed forming huge landslides.
RGB Colour Image [6] |
Im Becken und an höher gelegenen Stellen des Hanges sind helle Ablagerungen zu beobachten [Box 4]. Die meisten dieser Ablagerungen bestehen aus Sulfaten und wurden vermutlich in einem See gebildet. Die Höhenlage dieser Ablagerungen würde damit vermutlich die Minimum-Höhe des Sees widerspiegeln. Das dunkle vom Wind transportierte Material, das in Dünen angesammelt ist, wurde später abgelagert. Da der See zu dieser Zeit bereits verschwunden war, sind die Dünenablagerungen wesentlich jünger als die Sulfat-Ablagerungen.
In the basin and at elevated locations on the flank light-toned deposits are preserved [box 4]. Most of these deposits consist of sulfates which could have formed in a lake. The elevation of these deposits would then reflect the minimum lake level. Dark material often accumulated in dunes is much younger because at the time of its formation the lake had already disappeared.
Red-cyan anaglyph [7] |
Die Farbansichten wurden aus dem senkrecht blickenden Nadirkanal und den Farbkanälen erstellt, die Schrägansicht wurde aus den Stereokanälen der HRSC berechnet. Die Anaglyphen werden aus dem Nadirkanal und einem Stereokanal abgeleitet. Die schwarzweißen Detailaufnahmen wurden dem Nadirkanal entnommen, der von allen Kanälen die höchste Auflösung zur Verfügung stellt.
The colour scenes have been derived from the three HRSC-colour channels and the nadir channel. The perspective views have been calculated from the digital terrain model derived from the stereo channels. The anaglyph image was calculated from the nadir and one stereo channel. The black and white high resolution images were derived form the nadir channel which provides the highest detail of all channels.
Perspective view #2 [8] |
The High Resolution Stereo Camera (HRSC) experiment on the ESA Mars Express Mission is led by the Principal Investigator (PI) Prof. Dr. Gerhard Neukum who also designed the camera technically. The science team of the experiment consists of 40 Co-Investigators from 33 institutions and 10 nations. The camera was developed at the German Aerospace Center (DLR) under the leadership of the PI G. Neukum and built in cooperation with industrial partners (EADS Astrium, Lewicki Microelectronic GmbH and Jena-Optronik GmbH). The experiment on Mars Express is operated by the DLR Institute of Planetary Research, through ESA/ESOC. The systematic processing of the HRSC image data is carried out at DLR. The scenes shown here were created by the PI-group at the Institute for Geological Sciences of the Freie Universitaet Berlin in cooperation with the German Aerospace Center (DLR), Institute of Planetary Research, Berlin.
Download
hochaufgelöste Bilddaten / high resolution image data
Context Map [2]: |
Color-coded elevation model [3]: |
Feature Map [4]: |
Nadir Image [5]: |
RGB Colour Image [6]: |
Red-cyan anaglyph [7]: |
Perspective view [1]: |
Perspective view #2 [8]: |
© Copyright: ESA/DLR/FU Berlin (G. Neukum)